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One possible approach is considered to simplifying the procedure of solving heat 
and mass transfer problems in reacting media. 

Heat and mass exchange processes in chemically reactive media are often describe( 
by quite complicated systems of differential equations, whose computer solution is associated 
with certain difficulties. At the same time, for many boundary-value problem of heat and 
mass transfer in a semi-infinite planar layer of a moving chemically reactive medium, in 
which the energy conservation equation is written in the form 

dT ~. c~O~ = --d (s dT I + Q, ( 1 )  
dz  d z  \ d z  , 

q',~ (T, dT/dz) := 0 for  z = O, ( 2 )  

lim T = T~, ( 3 )  

tZ 

G* = "~ Gi := q'2 (T (0)). ( 4 )  
i = 1  

Let it be given, besides, that at quite low temperatures, i.e., at temperatures n3t 
exceeding some level Tf, the onflow of physicochemical transformations in the medium caa be 
neglected, and let it be assumed that 

n 

(2)' Q = O ,  s  c* = ciGi/G":=const. ( 5 )  
i = l  

Following the variable replacement 

where zj is determined from the condition 

y = z - - z : ,  (6) 

T (z:) = Ty, (7) 

the originally staged problem is transformed to 

dT d2y 
c'G* -- )U - -  

dy d f  
, : : ~ o ,  (8) 

dT 
Y. ciGi = 

dy i=i'~ 

s 

d ( er i 
d j -  dy / -F Q, 'g E [..7~., 0], !:~c = --el, 

T (0) = T: ,  

dTdy y = + o =  L dTdy v=-o-- 
~I (T, dT/dg) = 0 for  

lira T = T~, 

AQ:, 

y =- p .... 

(9) 
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(11) 

(12) 
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G* = q;~ (T (g~.)). (14) 

In this case it is easily seen that Eq. (8) has an analytic solution, using which one 
can obtain from relationship (ii) the second boundary condition for Eq. (9): 

a T  y o dy =_ = [AQI + c*O* ( T , - -  T~)l,&. (15) 

If the dynamic part of the problem is written in the form 

dG~ 
- - = w i ( Y ,  61 . . . . .  G~), i =  1, n, 

dy 
(16) 

6 i = 6 * r i ,  i-= 1, n, y = - - O ,  (17)  

~_~ri = 1, ( 18 )  
i = 1  

then the use of relationship (15) for a given value of the total mass velocity of motion 
of the medium G* makes it possible to reduce the original boundary-value problem to the 
Cauchy problem (9), (i0), (15), (16), (17) with a boundary integration region Yw, whose co- 
ordinate must be determined during the integration process of the system of differential 
equations (9), (16) from the condition of satisfying either equality (12) or equality (14). 
The unused equality of (12), (14) must close the solution of the problem of determining 
the total velocity of medium motion G*. 

The effectiveness of this approach to solving problem of heat and mass transfer in 
ractive media is evaluated for the example of solving the problem of quasistationary aero- 
thermal breakdown of glass-plastic materials in a high-temperature gas flow, a problem posed 
in [i, 2]. I~ this case Tf is understood to be the pyrolysis temperature of organic bonding, 
the chemical material composition in the region [0, Yw] is restricted by 

SiO!]), C(S), SiO(g), CO(g), H~). (19)  

As a single reaction varying the chemical composition of the material consider a re- 
action of the type 

SIOUX)+ C(~)--~SiO(g)+ CO (g), (20)  

while the corresponding flow formation velocities of isolated material components and the 
intensity of heat separation in it are calculated by the equations 

w c = -- exp (~R-- ~ / T )  6cP*/6", 

Wco := __ Wc28/12 , Wao =- __ wc44/12 , 

w ~  ,-  0, Wsio, ---- Wc60/12, Q = wckQ ~. 

(21) 

The total mass removal rate of silicon dioxide due to the reaction flow (20) is 
calculated by the equation 

Yw 

G R == .17 WsiodY , (22)  
0 

and to calculate the rate of surface evaporation of this material component we use the 
Hertz-Knudsen-Langmuir equation 

psio~ - -  psio~ (23)  
-I/2aRoT (y~)/60 

The total mass velocity of medium motion G* is uniquely related to the mass breakdown 
rate of silicon dioxide by a relation of the form 

~2 (T (Yw)) = G* - -  - -  (O R + Gw)/% (24) 
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Fig. i Typical shapes of the functions ~2(Y) and 
V(y): I) ~2; 2 V; 3) nodal value of the function 
(the ordinate axis shows ~V; -G*). 

As can be easily seen by considering Eq. (23), the calculation of the evaporation rate 
of silicon dioxide is related to the necessity of determining the chemical composition of 
the gas mixture over the heated material surface, which is besides also necessary for find- 
ing values of the functional dependence ~l(T, dT/dy). In this connection it is necessary 
to point out two facts, intimately related to the calculation difficulties as a whole, the 
substantial number of gas mixture components over the material surface, and the nonuniq~e 
dependence of the evaporation rate of silicon dioxide on the temperature of the material 
surface [I]. 

The system of nonlinear algebraic equations, describing the boundary conditions o:i 
the material surface within the analogy between heat and mass processes and friction i~i 
the boundary layer, has a standard form (see, for example, [I, 2]), and the alogrithm ,)f 
solving the problem considered is practically independent of the shape of the latter. There- 
fore, it does not seem useful to present here this system of equations. 

For a given value of velocity of medium velocity G* the solution of the problem i=~ 
sought a follows. Initially, one of the classical numerical methods of solving Cauchy pro- 
blems for systems of nonlinear ordinary differential equations, solved in the original de- 
rivatives by the Runge-Kutta method [3], for example, is seeking a solution of the system 
of equations (9), (16) in the negatively defined region of the argument y. In this ca~e, 
in each integration step, along with the unknown functions T, dTdy, and Gi, one also c~l- 
culates values of the function ~2(T) and the sign the mismatch V between @~(T) and G* (see 
Fig. I, where the points on the curves refer to nodal values of the argument y, located 
at the boundaries of the integration steps). 

Besides, during the integration process of this system of equations one controls the 
generation of situations, when in completing a certain number of integration steps the mis- 
match sign V changes (from positive to negative in the given case), with subsequent divi- 
sion of the given integration step (by using the trapezoid method, for example) at a cer- 
tain coordinate Yw, satisfying the condition: 

v @w) ~ 0. ( 2 5 )  

The ne x t  e lement  in the  problem s o l u t i o n  a l g o r i t h m  i s  d e t e r m i n i n g  from the  f u n c t i o : l a l  
dependenced ~ l (T ,  dT/dy)  th  va l ue  of  t h e , t h e r m a l  f l u x  go, f e e d i n g  the  i m p e n e t r a b l e  m a t e r i a l  
s u r f a c e  and g e n e r a t i n g  the  g iven  va lue  o f  the  mass v e l o c i t y  o f  t he  medium v e l o c i t y  G*, 

The u l t i m a t e  purpose  o f  the  c a l c u l a t i o n  i s  o f t e n  c o n s t r u c t i n g  the  dependence G*(q01 , 
and in this case the solution of the problem stated is achieved by successive calculations 
by this algorithm for a given set of values of the parameter G*. In this case it is impor- 
tant to note the total absence of iterative elements in the problem solution algorithm (only 
in the regime of purely nonequilibrium evaporation of silicon dioxide, i.e., when PSiO << 
P%iO^, is the calculation of the chemical composition of the gas mixture over the heated 
mater~al surface is finding the value of the coordinate Yw sought by the method of succe~sive 
approximations). These elements are basically generated only by the necessity of searc~ing 
a specific value of the parameter G*, corresponding to a given value of the thermal flux 
q0- As practice shows, however, the construction of a corresponding iteration process does 
not usually involve any difficulties, and the number of iterations required does not exceed 
three to five. 
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Fig. 2. Dimensionless rate of mass removal of a 
glass plastic as a function of the drag enthalpy 
of incoming air flow: i) R* = 0.007 m; 2) 0.05; 
3) i; 4) 5. I0, MJ/kg. 

Carrying out systematic calculations by the algorithm described above has shown that 
computer time expenditures are reduced in this case by approximately an order of magnitude 
in comparison with the case of using traditional iterative methods of solving problems of 
this kind. At the same time one must keep in mind that a substantial amount of reducing 
requirements in computer time is basically achieved in the study of substantially nonlinear 
problems, characterized by a substantial number of iterations required to find the solu- 
tion sought by traditional successive approximation methods. In studying these relatively 
simple problems (form the point of view of iterations) the achievement of a substantial 
effect by using the algorithm discussed above gives rise to problems. 

Another restriction on using this algorthm is related to the nonadmissibility of a 
dependence of the right hand sides of the investigated system of differential equations, 
written in canonical form, on values of the argument y belonging to the region [Yw, Yl), 
where Yl is the current value of the variable of integration. In a number of cases, how- 
ever, this substantial restriction can be removed to a large extent by replacing the series 
of functions sought by specially introduced auxiliary functions. 

Thus, in particular, in concluding the mechanism of mass removal of glass-plastic 
materials it remains to consider the melting process of silicon dioxide. As in [2], let 
the flow of this process in the high-temperature region (i.e., for T ~ Tf) be described by 
an equation of the form 

d~'~ _ 2p~ [~x - -  Px~ (Y - -  Y~)]/~, (26)  
dy 

while for T < Tf 

= O. (27) 

The total rate of silicon dioxide mass removal in the fluid phase is then written in 
the form 

0 

sL = (28) 

while the right hand side of Eqs. (16) for the SiO 2 component and (24) contain additional 
terms, including the flux of this process: 

dGsio, 
dy Wsio, _iQ,  (29 )  

,~  (T (y~)) :~ G* : - -  (G~ + G~ + GL)/% (30)  

The appearance in the right hand side of Eq. (26) of the parameters Yw and ~x, whose 
values can be determined only after completing the integration of the system of equations 
(9), (16), (26), (29) in the region [Yw, 0], naturally prevents direct use of the algorithm 
described above for solving the given problem (~x depends on the blow-in of material vapor 
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in the boundary layer). If the functions Gsio2(y) and a(y) are expanded in the auxiliary 
functions Dj(Y) and ~k(Y), i.e., they are represented in the form 

asio, (Y) =: ~h (Y) @ Ywq2 (Y) @ %% (Y), ( 31 )  

(g) = ~ (Y) @ Yw~ (Y) q- ~ a  (Y), (32)  

and t h e s e  e x p a n s i o n s  a r e  t h e n  s u b s t i t u t e d  i n t o  Eqs .  ( 2 6 ) ,  ( 2 9 ) ,  we t h e n  o b t a i n  a s y s t e m  
o f  e q u a t i o n s  f o r  d e t e r m i n i n g  a g a i n  t h e  a u x i l i a r y  f u n c t i o n s  i n t r o d u c e d ,  c o n t a i n i n g  nei~zher 
Yw n o r  Zx: 

dy 

6~.~ __ 2,oqopx;/[.~ ' (34)  
dy 

-- 29q0/~, (35)  
dy 

dill 
dy = Wsi~ ;~' (36)  

dtl2 
- -  ~ ,  ( 3 7 )  dy 

d~]a 
- -  ~a- ( 3 8 )  dy 

If the solution of this system is carried out with the boundary conditions 

~ (0) = ~ (0) = ~ (0) = n~ (0) = qa (0) = O, ql (0) = G*rs, o~, ( 39 )  

it is easily verified that the functions Gsio2(y) and ~(y) thus found satisfy both the 
original equations (26), (29) and the boundary conditions (17), (27). 

If, besides, one neglects the variation of the function GSi O (y), related to melting 
2 

of silicon dioxide, in the energy equation (16), i.e., one replaces in the latter GSiO~ by 
G~ determined by an equation of the form 

0 
O s i o ,  = ql, (40) 

which is equivalent to using the well-known Bethe-Adams assumption [4], then, as easily 
verified, the original boundary-value problem reduces to the Cauchy problem (9), (I0), 
(15)-(17), (33)-(39), but in the functions T, dT/dy, ql, D2, qa, ~i, ~2, ~, GC, GSiO, 

GCO, GH 2 �9 

The errors resulting from the use of assumption (40) usually do not affect substan- 
tially the calculation results. Besides, no difficulties occur in constructing an itera- 
tire process of refining the solution obtained by replacing Eq. (40) by a relation of the 
form 

0 0 0 
6s~o, (y) = m (y) + y~n~ (y) + ~n~ (y), ( e l )  

obtained by using in equality (31) the values of the parameters Yw of the previous itera- 
tion. 

In conclusion we note that the transition from traditional numerical iterative methods 
of solving problems of heat and mass exchange in reactive media to the solution method dis- 
cussed in the present study makes it possible to reduce substantially computer time require- 
ments. In particular, the application of this method to solving the problem described in 
[5] has made it possible to reduce the CPU time by approximately 40 times. 

Figure 2 shows, as an example, results of a study carried out by the algorithm of s~olv- 
ing heat and mass exchange problems in chemically reactive media as discussed in the pre- 
sent paper, and referring to the scale factor effect on the process of quasistationary ~ero- 
thermochemical mass removal of a glass-plastic material near the critical point of a blunt 
body of revolution. The calculations were carried out under the same physicochemical, thermo- 
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physical, and kinetic material properties as in [2], while by dimensionless rate of material 
breakdown we understand the ratio of the parameter G* to the heat transfer coefficient at 
the impenetrable surface of the body, selected with the opposite sign. 

As seen from the study results presented, on the whole the scale factor has a substan- 
tial effect on the process of material mass removal. In this case it is necessary to turn 
attention to the possibility of occurrence of nonunique dependences of the shape G(I0), 
not noted in the literature so far. The reason for a dependence of this nature is related 
to the breakdown in uniqueness of the function G(T(Yw)), first noted in [5] and related to 
the appearance on the plot of this portion of the function with an anomalous negative de- 
rivative value. With increasing parameter R* the extension of this anomalous portion of 
the functional dependence G(T(Yw) .) increases, due to which there also appears the possi- 
bility of equilibration of the thermal loads supplied to the surface of the body for various 
combinations of the basic components of heat exchange, mass removal of the material and radia- 
tive heat transfer on its heat surface. 

NOTATION 

Here z denotes the axis coordinate, related to the surface of the medium and directed 
toward the internal normal to the latter, n is the number of considered medium components, 
c i and G i are the specific heat capacity of the i-th component of the medium and its mass 
velocity of motion in the positive direction of the z-axis, I is the effective heat conduc- 
tion coefficient of the medium, T is temperature, Q is the source function, characterizing 
the intensity of heat separation due to flow of physicochemical transformations, ~i and 
~2 are general nonlinear dependences describing the onflow of heat and mass exchange pro- 
cesses at the surface of the medium, AQf is the heat separation at the front T = Tf, w i and 
r i are the mass rate of formation of the i-th medium component and its weight fraction 
in the mixture at y = -0, ~R, ~R and AQ R are the kinetic reaction constants (20) and its 
thermal effect, #* is the material density at T < Tf, a is the surface accomodation coef- 

ficient of the material, P~iO 2 is the saturated vapor pressure of silicon dioxide, PSiO 
is the partial pressure of silicon dioxide over the material surface, R 0 is the universal 
gas constant, ~ is the local melting mass rate of silicon dioxide, p and D are the density 
and dynamic viscosity of the alloy, T and p are the friction and pressure at the material 
surface, R* is the radius of the spherical blunt body, and I 0 is the drag enthalpy of the 
incoming air flux. Subscripts: x denotes differentiation with respect to the tangential 
coordinate, and (s) and (g) are the solid phase and gas phase starts of the material. 
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